麻省理工学院的研究人员开发了具有波浪形通道和金字塔突起的3D打印热交换器,将冷却效率提高了30-50%。虽然这一技术有望减少全球制冷能源需求,但目前高生产成本限制了其在航空航天和豪华车辆中的应用。这一突破凸显了增材制造重塑工业设计范式的潜力。
MIT researchers have developed 3D-printed heat exchangers with wave-like channels and pyramid protrusions, boosting cooling efficiency by 30-50%. While promising for reducing global refrigeration energy demands, high production costs currently limit applications to aerospace and luxury vehicles. This breakthrough highlights additive manufacturing’s potential to reshape industrial design paradigms.
复旦大学研究人员开发的一种突破性柔性生物电子系统,能够实时跟踪炎症并进行靶向药物递送。这项创新结合了亚毫米级分辨率温度传感器和热激活水凝胶,通过闭环自动化将愈合时间缩短30%,同时抑制感染。该技术在《美国国家科学院院刊》上得到验证,有望改变慢性病管理和急救护理,同时为AI增强的个性化医疗铺平道路。
麻省理工学院的研究人员开发了一种名为FLaPTOR的光动力振荡器,模仿昆虫肌肉的效率,实现了33W/kg的输出功率,超越了之前的软性驱动器。其三明治结构设计使得利用环境光实现自持续运动成为可能,有望彻底改变陆地、海洋和空中应用的无电池无人机。这一突破解决了软性机器人长期面临的动力限制挑战。
麻省理工学院的研究人员开发出了模仿人体组织力学的可编程纺织品,通过先进的编织技术,在应变下实现了92%的细胞存活率。通过研究三种基本编织模式,团队创造了复制组织'解卷曲'特性的支架,可能彻底改变慢性伤口的治疗方式。他们的专利系统允许为修复软骨、脂肪和肌肉定制硬度。
麻省理工学院的研究人员开发了一种基于微流控技术的方法,用于大规模生产药物递送纳米颗粒,将生产时间从60分钟缩短至仅几分钟,同时保持治疗效果。这一突破可能大幅降低卵巢癌治疗成本并加速临床试验,动物研究显示小鼠体内肿瘤完全消退。
生物燃料生产依赖自然光合作用,效率低且成本高。华盛顿大学蛋白质设计研究所的Nate Ennist建议采用人工智能设计合成蛋白质,彻底改造光合作用。这些蛋白质能捕获更广光谱,最终产出碳氢化合物而非糖类。除生物燃料外,该研究所运用RFdiffusion和ProteinMPNN等计算工具,研制新型蛋白质,用途涵盖消化塑料的酶、人工鼻子乃至先进疫苗。人工智能推动此法复兴纳米技术,助力精确设计分子,突破能源、材料和医疗保健领域。